Predicting knot or catenane type of site-specific recombination products.
نویسندگان
چکیده
Site-specific recombination on supercoiled circular DNA yields a variety of knotted or catenated products. Here, we present a topological model of this process and characterize all possible products of the most common substrates: unknots, unlinks, and torus knots and catenanes. This model tightly prescribes the knot or catenane type of previously uncharacterized data. We also discuss how the model helps to distinguish products of distributive recombination and, in some cases, determine the order of processive recombination products.
منابع مشابه
Predicting Knot or Catenane Type of Site-specific Recombination Products Dorothy Buck and Erica Flapan
Site-specific recombination on supercoiled circular DNA yields a variety of knotted or catenated products. We develop a model of this process, and give extensive experimental evidence that the assumptions of our model are reasonable. We then characterize all possible knot or catenane products that arise from the most common substrates. We apply our model to tightly prescribe the knot or catenan...
متن کاملPredicting knot and catenane type of products of site-specific recombination on twist knot substrates.
Site-specific recombination on supercoiled circular DNA molecules can yield a variety of knots and catenanes. Twist knots are some of the most common conformations of these products, and they can act as substrates for further rounds of site-specific recombination. They are also one of the simplest families of knots and catenanes. Yet, our systematic understanding of their implication in DNA and...
متن کاملThe topology of plasmid-monomerizing Xer site-specific recombination.
Xer site-specific recombination at cer and psi converts bacterial plasmid multimers into monomers so that they can be efficiently segregated to both daughter cells at cell division. Recombination is catalysed by the XerC and XerD recombinases acting at ~30 bp core sites, and is regulated by the action of accessory proteins bound to accessory DNA sequences adjacent to the core sites. Recombinati...
متن کاملA Topological Characterization of Knots and Links Arising from Site-specific Recombination
We develop a topological model of knots and links arising from a single (or multiple processive) round(s) of recombination starting with an unknot, unlink, or (2, m)torus knot or link substrate. We show that all knotted or linked products fall into a single family, and prove that the size of this family grows linearly with the cube of the minimum number of crossings. Additionally, we prove that...
متن کاملMutants of Tn3 resolvase which do not require accessory binding sites for recombination activity.
Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 374 5 شماره
صفحات -
تاریخ انتشار 2007